

PB-003-1153003

Seat No.

M. Sc. (Electronics) (Sem. III) (CBCS) Examination May / June - 2018

Paper - 11: Op-Amp & Its Applications

Faculty Code: 003

Subject Code: 1153003

Time: $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 Answer the following questions in brief: (Any Seven) 14
 - (1) Explain input bias and input offset currents.
 - (2) Draw and explain equivalent circuit of an operational amplifier.
 - (3) Define oscillator and multivibrator.
 - (4) Design a narrow-band bandpass filter with $F_{\rm C}$ = 1 kHz, Q = 5 and $A_{\rm F}$ = 10
 - (5) Draw the block diagram of a typical operational amplifier and explain working of each in not more than 3 lines.
 - (6) Mention advantages and disadvantages of active filters.
 - (7) For an inverting amplifier designed using IC 741, with $R1 = 1k\Omega$ and $RF = 4.7k\Omega$; calculate values of AF, R_iF, R_oF, fF and V_{oo}T. (AOL=200000,

$$R_i = 2M\Omega, R_o = 75\Omega, f_o = 5Hz)$$

- (8) Explain working of an op-amp integrator in brief.
- (9) Draw the circuit diagram of a closed loop differential amplifier. Also derive expression for its voltage gain.
- (10) Enlist characteristics of an ideal operational amplifier.
- 2 Attempt any two of the following questions: 14 (Each 7 Marks)
 - (1) With appropriate circuit diagram explain any one application of instrumentation amplifier.
 - (2) With necessary diagrams explain working of summing, scaling and averaging amplifier in inverting mode.
 - (3) Write a detailed note on various open-loop configurations of an op-amp.

3	Answer the following questions :		
	(1)	Write a detailed note on RC-phase shift oscillator.	5
	(2)	Explain use of instrumentation amplifier in	5
		temperature indicator and controller.	
	(3)	Explain AC amplifier with single power supply with	4
		help of necessary diagrams.	
		\mathbf{OR}	
3	Answer the following questions:		
	(1)	Write a short note on floating load type voltage to	5
		current converter.	
	(2)	Write a detailed note on Schmitt Trigger.	5
	(3)	Explain working principle of an oscillator. Also	4
		explain frequency stability.	
4	Answer the following questions:		
	(1)	What is slew rate? What are the causes? Explain	5
		effect of slew rate in real applications of op-amp.	
	(2)	Explain working of a square wave generator using	5
		op-amp.	
	(3)	Write a short note on peaking amplifier using op-amp	. 4
5	Ans	swer any two of the following questions:	14
	(Ea	ch 7 Marks)	
	(1)	Write a detailed note on variation in offset voltage due	
		to change in power supply and temperature.	
	(2)	For voltage series feedback derive expressions for	
		closed-loop voltage gain, input resistance, output	
		resistance, bandwidth and total output offset voltage.	
	(3)	Draw high frequency op-amp equivalent circuit and	
		with help of necessary expressions, explain how open-	
		loop gain varies with frequency.	
	(4)	What is a filter? Explain design and working of first	
		and second order low-pass filter. Design first and	
		second order low-pass filter with $F_{\rm C}$ = 1000 Hz.	